# An Asymptotically Efficient Weighted Least Squares Estimator for Co-Array-Based DoA Estimation

Published on Jan 1, 2020in IEEE Transactions on Signal Processing5.23

· DOI :10.1109/TSP.2019.2954506

Abstract

Co-array-based Direction of Arrival (DoA) estimation using Sparse Linear Arrays (SLAs) has recently gained considerable interest in array processing thanks to its capability of providing enhanced degrees of freedom. Although the literature presents a variety of estimators in this context, none of them are proven to be statistically efficient. This work introduces a novel estimator for the co-array-based DoA estimation employing the Weighted Least Squares (WLS) method. An analytical expression for the large sample performance of the proposed estimator is derived. Then, an optimal weighting is obtained so that the asymptotic performance of the proposed WLS estimator coincides with the Cram\'{e}r-Rao Bound (CRB), thereby ensuring asymptotic statistical efficiency of resulting WLS estimator. This implies that the proposed WLS estimator has a significantly better performance compared to existing methods. Numerical simulations are provided to validate the analytical derivations and corroborate the improved performance.