Pharmacological inhibition of histone deacetylase reduces NADPH oxidase expression, oxidative stress and the progression of atherosclerotic lesions in hypercholesterolemic apolipoprotein E-deficient mice; potential implications for human atherosclerosis

Volume: 28, Pages: 101338 - 101338
Published: Jan 1, 2020
Abstract
NADPH oxidase (Nox)-derived reactive oxygen species (ROS) are instrumental in all inflammatory phases of atherosclerosis. Dysregulated histone deacetylase (HDAC)-related epigenetic pathways have been mechanistically linked to alterations in gene expression in experimental models of cardiovascular disorders. Hitherto, the relation between HDAC and Nox in atherosclerosis is not known. We aimed at uncovering whether HDAC plays a role in mediating...
Paper Details
Title
Pharmacological inhibition of histone deacetylase reduces NADPH oxidase expression, oxidative stress and the progression of atherosclerotic lesions in hypercholesterolemic apolipoprotein E-deficient mice; potential implications for human atherosclerosis
Published Date
Jan 1, 2020
Volume
28
Pages
101338 - 101338
Citation AnalysisPro
  • Scinapse’s Top 10 Citation Journals & Affiliations graph reveals the quality and authenticity of citations received by a paper.
  • Discover whether citations have been inflated due to self-citations, or if citations include institutional bias.