Match!

Study of the low-temperature reactivity of large n-alkanes through cool diffusion flame extinction

Published on May 1, 2017in Combustion and Flame4.12
· DOI :10.1016/j.combustflame.2017.01.028
Christopher B. Reuter7
Estimated H-index: 7
(Princeton University),
Minhyeok Lee2
Estimated H-index: 2
(Princeton University)
+ 1 AuthorsYiguang Ju54
Estimated H-index: 54
(Princeton University)
Abstract
Abstract The low-temperature oxidation of hydrocarbon fuels has received increasing attention as advanced engines seek to operate in less conventional combustion regimes. Large n -alkanes are a notable component of many real transportation fuels and possess strong reactivity in this important low-temperature range. These n -alkanes have been studied extensively in various canonical kinetic experiments but seldom in systems with strong coupling between low-temperature chemistry, transport, and heat release. To address this issue, the present study investigates self-sustaining n -alkane cool diffusion flames in a counterflow burner. The extinction limits of both hot diffusion flames and cool diffusion flames are measured at atmospheric pressure for a range of n -alkanes from n -heptane to n -tetradecane. It is observed that while these fuels behave similarly for hot flames, the larger n -alkanes are substantially more reactive in the low-temperature cool flame regime. Moreover, ozone addition strongly enhances the low-temperature chemistry to the point where the differences in fuel reactivity are nearly suppressed. The experimental measurements are compared with numerical simulations employing both detailed and reduced chemical kinetic models of various sizes. Although the different kinetic models adequately predict the extinction limits of the hot flames, a large scatter is present in the model results for cool flames, and a general overprediction of the measured cool flame extinction limit is observed for all of the fuels studied. This implies that the cool flame heat release is not well agreed upon by the current chemical kinetic models, despite their capability to reproduce many homogeneous reactor experiments at low temperatures. Furthermore, it is observed that the cool flame heat release is spread over a substantial number of reactions involving large molecules, a trait that makes it particularly difficult to create reduced kinetic models that can accurately describe cool flame behavior. The results of this study suggest that the cool flame platform can provide crucial validation of the coupling between chemistry, transport, and heat release in flames at low temperatures.
  • References (99)
  • Citations (15)
References99
Newest
#1Christopher B. Reuter (Princeton University)H-Index: 7
#2Sang Hee Won (Princeton University)H-Index: 27
Last.Yiguang Ju (Princeton University)H-Index: 54
view all 3 authors...
#1Chae Hoon Sohn (Sejong University)H-Index: 14
#2Hee Sun Han (Sejong University)H-Index: 1
Last.Sang Hee Won (Princeton University)H-Index: 27
view all 5 authors...
#1Tanvir I. Farouk (USC: University of South Carolina)H-Index: 4
#2Daniel L. Dietrich (Glenn Research Center)H-Index: 13
Last.Frederick L. Dryer (Princeton University)H-Index: 4
view all 4 authors...
#1Kuiwen Zhang (National University of Ireland, Galway)H-Index: 16
#2Colin Banyon (National University of Ireland, Galway)H-Index: 6
Last.Karl Alexander Heufer (RWTH Aachen University)H-Index: 6
view all 9 authors...
#1Bret C. Windom (Princeton University)H-Index: 10
#2Sang Hee Won (Princeton University)H-Index: 27
Last.Campbell D. Carter (AFRL: Air Force Research Laboratory)H-Index: 39
view all 8 authors...
#1Alessandro Stagni (Polytechnic University of Milan)H-Index: 8
#2Alessio Frassoldati (Polytechnic University of Milan)H-Index: 34
Last.E. Ranzi (Polytechnic University of Milan)H-Index: 49
view all 5 authors...
Cited By15
Newest
#1Yiguang Ju (Princeton University)H-Index: 54
#2Christopher B. Reuter (Princeton University)H-Index: 7
Last.Sang Hee Won (USC: University of South Carolina)H-Index: 3
view all 0 authors...
#1Omar R. Yehia (Princeton University)H-Index: 2
#2Christopher B. Reuter (Princeton University)H-Index: 7
Last.Yiguang Ju (Princeton University)H-Index: 54
view all 3 authors...
#1Mohammadhadi Hajilou (UW: University of Wyoming)H-Index: 2
#2Matthew Q. Brown (UW: University of Wyoming)
Last.Erica Belmont (UW: University of Wyoming)H-Index: 5
view all 4 authors...
#1Wenting Sun (Georgia Institute of Technology)H-Index: 20
#2Xiang Gao (Georgia Institute of Technology)H-Index: 7
Last.Timothy Ombrello (AFRL: Air Force Research Laboratory)H-Index: 16
view all 4 authors...
#1Yang Zhang (THU: Tsinghua University)H-Index: 11
#2Xiehe Yang (THU: Tsinghua University)
Last.Junfu Lyu (THU: Tsinghua University)H-Index: 3
view all 6 authors...
#1Omar R. Yehia (Princeton University)H-Index: 2
#2Christopher B. Reuter (Princeton University)H-Index: 7
Last.Yiguang Ju (Princeton University)H-Index: 54
view all 3 authors...
#1Minhyeok Lee (UTokyo: University of Tokyo)H-Index: 2
#2Yong Fan (UTokyo: University of Tokyo)H-Index: 5
Last.Yuji Suzuki (UTokyo: University of Tokyo)H-Index: 30
view all 5 authors...
#1Eric Lin (Princeton University)H-Index: 1
#2Christopher B. Reuter (Princeton University)H-Index: 7
Last.Yiguang Ju (Princeton University)H-Index: 54
view all 3 authors...
#1Fahd E. Alam (USC: University of South Carolina)H-Index: 4
#2Ali Charchi Aghdam (USC: University of South Carolina)
Last.Tanvir Farouk (USC: University of South Carolina)H-Index: 17
view all 4 authors...
#1Christopher B. Reuter (Princeton University)H-Index: 7
Last.Yiguang Ju (Princeton University)H-Index: 54
view all 4 authors...
View next paperExperimental study of the dynamics and structure of self-sustaining premixed cool flames using a counterflow burner