A Network of Conformational Transitions Revealed by Molecular Dynamics Simulations of the Binary Complex of Escherichia coli 6-Hydroxymethyl-7,8-dihydropterin Pyrophosphokinase with MgATP

Volume: 55, Issue: 49, Pages: 6931 - 6939
Published: Nov 30, 2016
Abstract
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the first reaction in the folate biosynthetic pathway. Comparison of its X-ray and nuclear magnetic resonance structures suggests that the enzyme undergoes significant conformational change upon binding to its substrates, especially in three catalytic loops. Experimental research has shown that, in its binary form, even bound by analogues of MgATP, loops 2 and 3 remain rather...
Paper Details
Title
A Network of Conformational Transitions Revealed by Molecular Dynamics Simulations of the Binary Complex of Escherichia coli 6-Hydroxymethyl-7,8-dihydropterin Pyrophosphokinase with MgATP
Published Date
Nov 30, 2016
Volume
55
Issue
49
Pages
6931 - 6939
Citation AnalysisPro
  • Scinapse’s Top 10 Citation Journals & Affiliations graph reveals the quality and authenticity of citations received by a paper.
  • Discover whether citations have been inflated due to self-citations, or if citations include institutional bias.