# A fast algorithm for the minimum covariance determinant estimator

Abstract

The minimum covariance determinant (MCD) method of Rousseeuw is a highly robust estimator of multivariate location and scatter. Its objective is to find h observations (out of n) whose covariance matrix has the lowest determinant. Until now, applications of the MCD were hampered by the computation time of existing algorithms, which were limited to a few hundred objects in a few dimensions. We discuss two important applications of larger size, one about a production process at Philips with n = 677 objects and p = 9 variables, and a dataset from astronomy with n = 137,256 objects and p = 27 variables. To deal with such problems we have developed a new algorithm for the MCD, called FAST-MCD. The basic ideas are an inequality involving order statistics and determinants, and techniques which we call “selective iteration” and “nested extensions.” For small datasets, FAST-MCD typically finds the exact MCD, whereas for larger datasets it gives more accurate results than existing algorithms and is faster by orders...