Fitting Linear Mixed-Effects Models Using lme4

Published on Oct 7, 2015in Journal of Statistical Software11.65
· DOI :10.18637/jss.v067.i01
Douglas M. Bates30
Estimated H-index: 30
Martin Mächler15
Estimated H-index: 15
+ 1 AuthorsSteven C. Walker10
Estimated H-index: 10
Maximum likelihood or restricted maximum likelihood (REML) estimates of the parameters in linear mixed-effects models can be determined using the lmer function in the lme4 package for R. As for most model-fitting functions in R, the model is described in an lmer call by a formula, in this case including both fixed- and random-effects terms. The formula and data together determine a numerical representation of the model from which the profiled deviance or the profiled REML criterion can be evaluated as a function of some of the model parameters. The appropriate criterion is optimized, using one of the constrained optimization functions in R, to provide the parameter estimates. We describe the structure of the model, the steps in evaluating the profiled deviance or REML criterion, and the structure of classes or types that represents such a model. Sufficient detail is included to allow specialization of these structures by users who wish to write functions to fit specialized linear mixed models, such as models incorporating pedigrees or smoothing splines, that are not easily expressible in the formula language used by lmer.
  • References (33)
  • Citations (11050)
#1Kyle Klein (UCSB: University of California, Santa Barbara)H-Index: 6
#2Julian Neira (UCSB: University of California, Santa Barbara)H-Index: 1
#1Yeojin Chung (Kookmin University)H-Index: 5
#2Sophia Rabe-Hesketh (University of California, Berkeley)H-Index: 52
Last.Jingchen Liu (Columbia University)H-Index: 13
view all 5 authors...
#1Benjamin M. Bolker (McMaster University)H-Index: 47
#2Beth Gardner (Patuxent Wildlife Research Center)H-Index: 24
Last.Elise F. Zipkin (Patuxent Wildlife Research Center)H-Index: 21
view all 22 authors...
#1Jeff Bezanson (MIT: Massachusetts Institute of Technology)H-Index: 3
#2Stefan KarpinskiH-Index: 4
Last.Alan Edelman (MIT: Massachusetts Institute of Technology)H-Index: 35
view all 4 authors...
Cited By11050
#1Daniël van Wijk (UG: University of Groningen)H-Index: 1
#2Gideon Bolt (UU: Utrecht University)H-Index: 20
Last.Jochem Tolsma (Radboud University Nijmegen)H-Index: 14
view all 0 authors...
#1Vasiliki Koukoulioti (A.U.Th.: Aristotle University of Thessaloniki)H-Index: 1
#2Roelien Bastiaanse (HSE: National Research University – Higher School of Economics)H-Index: 27
#1Frank Reinhold (TUM: Technische Universität München)H-Index: 1
#2Stefan Hoch (TUM: Technische Universität München)H-Index: 1
Last.Kristina Reiss (TUM: Technische Universität München)H-Index: 15
view all 0 authors...
#1Ricardo Böheim (TUM: Technische Universität München)
#2Maximilian Knogler (TUM: Technische Universität München)H-Index: 4
Last.Tina Seidel (TUM: Technische Universität München)H-Index: 23
view all 4 authors...
#1Thomas Vanneste (UGent: Ghent University)H-Index: 1
#2Sanne Govaert (UGent: Ghent University)
Last.Pieter De Frenne (UGent: Ghent University)H-Index: 19
view all 0 authors...
#1Ava Creemers (UPenn: University of Pennsylvania)H-Index: 1
#2Amy Goodwin Davies (UPenn: University of Pennsylvania)H-Index: 1
Last.David Embick (UPenn: University of Pennsylvania)H-Index: 20
view all 0 authors...
#1Solomon Kamau (UoN: University of Nairobi)H-Index: 2
#2Edmundo Barrios (World Agroforestry Centre)H-Index: 23
Last.Johannes Lehmann (Cornell University)H-Index: 79
view all 0 authors...
#1Rafaela Marques (UFSJ: Universidade Federal de São João del-Rei)
#2Robson Bruno Dutra Pereira (University of Aveiro)H-Index: 4
Last.J. Paulo Davim (University of Aveiro)H-Index: 53
view all 0 authors...
View next paperAn R Companion to Applied Regression