arXiv: Signal Processing

Papers

Papers 3147

1 page of 315 pages (3,147 results)

Newest

Graph convolutional networks (GCNs) have well-documented performance in various graph learning tasks, but their analysis is still at its infancy. Graph scattering transforms (GSTs) offer training-free deep GCN models that extract features from graph data, and are amenable to generalization and stability analyses. The price paid by GSTs is exponential complexity in space and time that increases with the number of layers. This discourages deployment of GSTs when a deep architecture is needed. The ...

Discovering Transforms: A Tutorial on Circulant Matrices, Circular Convolution, and the Discrete Fourier Transform.

How could the Fourier and other transforms be naturally discovered if one didn't know how to postulate them? In the case of the Discrete Fourier Transform (DFT), we show how it arises naturally out of analysis of circulant matrices. In particular, the DFT can be derived as the change of basis that simultaneously diagonalizes all circulant matrices. In this way, the DFT arises naturally from a linear algebra question about a set of matrices. Rather than thinking of the DFT as a signal transform, ...

Recently we demonstrated an integrated photoacoustic (PA) and ultrasound (PAUS) system using a kHz-rate wavelength-tunable laser and a swept-beam delivery approach. It irradiates a medium using a narrow laser beam sweeping at high repetition rate over the desired imaging area, in contrast to the conventional PA approach using broad beam illumination at a low repetition. One significant advantage of this approach is that the fundamental problem of decoupling local light absorption at a point from...

Light-fidelity (LiFi) is a fully-networked bidirectional optical wireless communication (OWC) that is considered a promising solution for high-speed indoor connectivity. Unlike in conventional radio frequency wireless systems, the OWC channel is not isotropic, meaning that the device orientation affects the channel gain significantly. However, due to the lack of proper channel models for LiFi systems, many studies have assumed that the receiver is vertically upward and randomly located within th...

In this work, we use deep unfolding to view cascaded non-linear RF systems as model-based neural networks. This view enables the direct use of a wide range of neural network tools and optimizers to efficiently identify such cascaded models. We demonstrate the effectiveness of this approach through the example of digital self-interference cancellation in full-duplex communications where an IQ imbalance model and a non-linear PA model are cascaded in series. For a self-interference cancellation pe...

Millimeter waves is one of 5G networks strategies to achieve high bit rates. Measurement campaigns with these signals are difficult and require expensive equipment. In order to generate realistic data this paper refines a methodology for virtual measurements of 5G channels, which combines a simulation of urban mobility with a ray-tracing simulator. The urban mobility simulator is responsible for controlling mobility, positioning pedestrians and vehicles throughout each scene while the ray-tracin...

The automatic classification of applications and services is an invaluable feature for new generation mobile networks. Here, we propose and validate algorithms to perform this task, at runtime, from the raw physical channel of an operative mobile network, without having to decode and/or decrypt the transmitted flows. Towards this, we decode Downlink Control Information (DCI) messages carried within the LTE Physical Downlink Control CHannel (PDCCH). DCI messages are sent by the radio cell in clea...

This paper proposes a Fast Graph Convolutional Neural Network (FGRNN) architecture to predict sequences with an underlying graph structure. The proposed architecture addresses the limitations of the standard recurrent neural network (RNN), namely, vanishing and exploding gradients, causing numerical instabilities during training. State-of-the-art architectures that combine gated RNN architectures, such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) with graph convolutions are kn...

The Ideal Observer (IO) performance has been advocated when optimizing medical imaging systems for signal detection tasks. However, analytical computation of the IO test statistic is generally intractable. To approximate the IO test statistic, sampling-based methods that employ Markov-Chain Monte Carlo (MCMC) techniques have been developed. However, current applications of MCMC techniques have been limited to several object models such as a lumpy object model and a binary texture model, and it r...

We propose a model-based machine-learning approach for polarization-multiplexed systems by parameterizing the split-step method for the Manakov-PMD equation. This approach performs hardware-friendly DBP and distributed PMD compensation with performance close to the PMD-free case.

12345678910

Top fields of study