Match!
Earth and Planetary Science Letters
IF
4.64
Papers
17897
Papers 17990
1 page of 1,799 pages (18k results)
Newest
Abstract Marine sulfate ( SO 4 2 − ) is intimately connected to the global carbon and oxygen cycles through its important role as an electron acceptor for the microbial respiration of organic carbon. The biogeochemical feedbacks within the sulfur, carbon, and oxygen cycles may have changed through time, reflecting changes in the concentration of sulfate in the oceans. Unfortunately, there is much uncertainty about the size of the marine sulfate reservoir throughout Earth history. In particular, ...
Source
Abstract Polycrystalline deuterated ice (D2O) was deformed over a range of high-temperatures (−20 to −1 °C; 0.92–0.99 T m ) during in situ neutron diffraction texture and grain-size analysis. This allowed for a continuous monitoring of the evolution of rheology, texture, grain-numbers and the type of microstructures, which are compared to those encountered in basal sections of ice-sheets. We quantify the textural evolution with J-index changes as a function of strain-rate and temperature. Three ...
Source
Abstract Noble gases are important geochemical tracers allowing reconstructing global volatile cycles in Earth's reservoirs. To constrain these fundamental processes, precise data on their partitioning behavior at deep Earth conditions are needed. Such data are only available at moderate pressures up to 25 GPa due to experimental challenges. We have investigated the possibility of noble gas storage in the Earth's lower mantle up to 115 GPa. We studied the incorporation of krypton in the second m...
Source
Abstract Upper plate deformation within a subduction zone depends on the complex relationship between surface plate motions, trench motion, slab pull and asthenospheric flow. Previous modelling studies suggest that trench motion rates should be related to slab buoyancy, but this relationship is neither clear nor verified by observations of natural subduction systems. Trench motion is also thought to induce upper plate deformation; however, no clear correlation has been identified between the dir...
Source
Abstract The anaerobic oxidation of methane coupled with sulfate reduction (AOM-SR) is a major microbially-mediated methane consuming process in marine sediments including methane seeps. The AOM-SR can lead to the formation of methane-derived authigenic carbonates which entrap sulfide minerals (pyrite) and carbonate-associated sulfate (CAS). We studied the sulfur isotope compositions of the pyrite and CAS in seafloor methane-derived authigenic carbonate crust samples from the North Sea and Baren...
Source
Abstract The compositions and volumes of basalt generated by partial melting of the Earth's mantle provide fundamental constraints on the thermo-chemical conditions of the upper mantle. However, using melting products to interpret uniquely these conditions is challenging given the complexity of the melting and melt aggregation processes. Forward models simulating melting of lithologically heterogeneous mantle sources can account for this complexity, but require assumptions about key model input ...
Source
Abstract We present the first stable chromium isotopic data for a suite of ocean island basalts (OIB) in order to investigate the Cr isotope fractionation during major igneous processes such as partial melting and fractional crystallisation. Twenty-one basaltic samples from Fangataufa Island (Tuamotu Archipelago, Pacific Ocean) have been analysed for major- and trace-element concentrations, and Sr, Nd and Cr isotopic compositions. They define two distinct series: medium to high-K calc-alcaline a...
Source
Abstract The deformation pattern of the paleoshorelines of extinct Lake Bonneville were among the first features to indicate that Earth's interior responds viscoelastically to changes in surface loads ( Gilbert, 1885 ). Here we revisit and extend this classic study of isostatic rebound with updated lake chronologies for Lake Bonneville and Lake Lahontan as well as revised elevation datasets of shoreline features. The first order domal pattern in the shoreline elevations can be explained by rebou...
Source
Abstract Seabed sediment flows called turbidity currents form some of the largest sediment accumulations, deepest canyons and longest channel systems on Earth. Only rivers transport comparable sediment volumes over such large areas; but there are far fewer measurements from turbidity currents, ensuring they are much more poorly understood. Turbidity currents differ fundamentally from rivers, as turbidity currents are driven by the sediment that they suspend. Fast turbidity currents can pick up s...
Source
Abstract Fluid-rock interaction on oceanic transform faults (OTFs) is important for both the deformation behavior of the lithosphere and volatile cycling in the Earth. Rocks deformed and exhumed at OTFs preserve information about the depth extent of fluid percolation and the nature of fluid-rock interactions within these fault zones. In this study, we focus on five dredges from the Shaka and Prince Edward OTFs on the ultraslow spreading Southwest Indian Ridge that recovered significant volumes o...
Source
12345678910
Top fields of study
Geomorphology
Geology
Geochemistry
Mineralogy
Mantle (geology)
Geophysics