Match!
Acta Crystallographica Section D-biological Crystallography
IF
3.23
Papers
6088
Papers 6075
1 page of 608 pages (6,075 results)
Newest
The catalytic domain (residues 128–449) of the Orpinomyces sp. Y102 CelC7 enzyme (Orp CelC7) exhibits cellobiohydrolase and cellotriohydrolase activities. Crystal structures of Orp CelC7 and its cellobiose-bound complex have been solved at resolutions of 1.80 and 2.78 A, respectively. Cellobiose occupies subsites +1 and +2 within the active site of Orp CelC7 and forms hydrogen bonds to two key residues: Asp248 and Asp409. Furthermore, its substrate-binding sites have both tunnel-like and open-cl...
Source
Source
Atrazine is an s-triazine-based herbicide that is used in many countries around the world in many millions of tons per year. A small number of organisms, such as Pseudomonas sp. strain ADP, have evolved to use this modified s-triazine as a food source, and the various genes required to metabolize atrazine can be found on a single plasmid. The atomic structures of seven of the eight proteins involved in the breakdown of atrazine by Pseudomonas sp. strain ADP have been determined by X-ray crystall...
Source
For the extraction of the best possible X-ray diffraction data from macromolecular crystals, accurate positioning of the crystals with respect to the X-ray beam is crucial. In addition, information about the shape and internal defects of crystals allows the optimization of data-collection strategies. Here, it is demonstrated that the X-ray beam available on the macromolecular crystallo­graphy beamline P14 at the high-brilliance synchrotron-radiation source PETRA III at DESY, Hamburg, Germany can...
Source
Source
As part of the Virus-X Consortium that aims to identify and characterize novel proteins and enzymes from bacteriophages and archaeal viruses, the genes of the putative lytic proteins XepA from Bacillus subtilis prophage PBSX and YomS from prophage SPβ were cloned and the proteins were subsequently produced and functionally characterized. In order to elucidate the role and the molecular mechanism of XepA and YomS, the crystal structures of these proteins were solved at resolutions of 1.9 and 1.3 ...
Source
Substantial advances have been made in the computational design of protein interfaces over the last 20 years. However, the interfaces targeted by design have typically been stable and high-affinity. Here, we report the development of a generic computational design method to stabilize the weak interactions at crystallo­graphic interfaces. Initially, we analyzed structures reported in the Protein Data Bank to determine whether crystals with more stable interfaces result in higher resolution struct...
Source
A nonlinear least-squares method for refining a parametric expression describing the estimated errors of reflection intensities in serial crystallographic (SX) data is presented. This approach, which is similar to that used in the rotation method of crystallographic data collection at synchrotrons, propagates error estimates from photon-counting statistics to the merged data. Here, it is demonstrated that the application of this approach to SX data provides better SAD phasing ability, enabling t...
Source
#1S. Wosicki (PAN: Polish Academy of Sciences)H-Index: 1
#2Miroslaw Gilski (PAN: Polish Academy of Sciences)H-Index: 8
Last.Mariusz Jaskolski (PAN: Polish Academy of Sciences)H-Index: 35
view all 5 authors...
Retroviral proteases (RPs) are of high interest owing to their crucial role in the maturation process of retroviral particles. RPs are obligatory homodimers, with a pepsin-like active site built around two aspartates (in DTG triads) that activate a water molecule, as the nucleophile, under two flap loops. Mason–Pfizer monkey virus (M-PMV) is unique among retroviruses as its protease is also stable in the monomeric form, as confirmed by an existing crystal structure of a 13 kDa variant of the pro...
Source
#1Mika Saotome (Meisei University)H-Index: 2
#2Naoki Horikoshi (Waseda University)H-Index: 16
Last.Wataru Kagawa (Meisei University)H-Index: 23
view all 7 authors...
The eukaryotic genome is compacted inside the nucleus of the cell in the form called chromatin. The fundamental unit of chromatin is the nucleosome, which contains four types of histones (H3, H4, H2A and H2B) and approximately 150 base pairs of DNA wrapped around the histone complex. The structure of the nucleosome is highly conserved across several eukaryotic species, and molecular replacement has been the primary phasing method used to solve nucleosome structures by X-ray crystallography. Howe...
Source
12345678910
Top fields of study
Chemistry
Crystallization
Biochemistry
Crystallography
Biology