Branding/Logomark minus Citation Combined Shape Icon/Bookmark-empty Icon/Copy Icon/Collection Icon/Close Copy 7 no author result Created with Sketch. Icon/Back Created with Sketch. Match!
Daniel L. Dietrich
Glenn Research Center
86Publications
13H-index
625Citations
Publications 86
Newest
Published on Jul 1, 2019in Combustion and Flame 4.49
Vedha Nayagam13
Estimated H-index: 13
,
Daniel L. Dietrich13
Estimated H-index: 13
,
Forman A. Williams48
Estimated H-index: 48
Source Cite
Published on Jan 1, 2019
Tanvir Farouk17
Estimated H-index: 17
(USC: University of South Carolina),
Daniel L. Dietrich13
Estimated H-index: 13
(Glenn Research Center),
Frederick L. Dryer66
Estimated H-index: 66
(Princeton University)
Abstract Transient, isolated n -alkane droplet combustion is simulated at elevated pressure for helium-diluent substituted-air mixtures. We report the presence of unique quasi-steady, three-stage burning behavior of large sphero-symmetric n -alkane droplets at these elevated pressures and helium substituted ambient fractions. Upon initiation of reaction, hot-flame diffusive burning of large droplets is initiated that radiatively extinguishes to establish cool flame burning conditions in nitrogen...
1 Citations Source Cite
Published on Sep 1, 2018in Combustion and Flame 4.49
Vedha Nayagam4
Estimated H-index: 4
(Case Western Reserve University),
Daniel L. Dietrich13
Estimated H-index: 13
(Glenn Research Center),
Forman A. Williams48
Estimated H-index: 48
(UCSD: University of California, San Diego)
Abstract Millimeter-size fuel droplets burning in microgravity show substantial thermal expansion at earlier times in their burning history. Here, we develop a simple model that accounts for thermal expansion of the liquid fuel and compare it against experimental measurements. The results show that excellent agreement with measured droplet-diameter histories throughout the hot-flame period of combustion is obtained when the effect of thermal expansion is included.
Source Cite
Published on Aug 1, 2018in Combustion and Flame 4.49
Vedha Nayagam4
Estimated H-index: 4
(Case Western Reserve University),
Daniel L. Dietrich13
Estimated H-index: 13
(Glenn Research Center)
+ 1 AuthorsForman A. Williams48
Estimated H-index: 48
(UCSD: University of California, San Diego)
Abstract Experimental observations are presented concerning radiative extinction of large n-alkane droplets in diluent-substituted environments at moderately varied pressures in microgravity onboard the International Space Station. The fuels considered are n-heptane, n-octane, and n-decane with carbon dioxide, helium, and xenon used as inerts, replacing nitrogen as diluents at varying amounts. It is shown that a simple scaling analysis, based on the assumptions that radiative extinction occurs w...
Source Cite
Vedha Nayagam4
Estimated H-index: 4
(Case Western Reserve University),
Daniel L. Dietrich13
Estimated H-index: 13
(Glenn Research Center),
Forman A. Williams48
Estimated H-index: 48
(UCSD: University of California, San Diego)
Abstract Droplet combustion experiments carried out onboard the International Space Station, using pure fuels and fuel mixtures, have shown that quasi-steady burning can be sustained by a non-traditional flame configuration, namely a “cool flame” burning in the “partial-burning” regime where both fuel and oxygen leak through the low-temperature-controlled flame-sheet. Recent experiments involving large, bi-component fuel ( n -decane and hexanol, 50/50 by volume) droplets at elevated pressures sh...
1 Citations Source Cite
Published on Jul 4, 2017in Combustion Theory and Modelling 1.74
Vedha Nayagam4
Estimated H-index: 4
(Case Western Reserve University),
Daniel L. Dietrich13
Estimated H-index: 13
(Glenn Research Center),
Forman A. Williams48
Estimated H-index: 48
(UCSD: University of California, San Diego)
A Burke–Schumann description of three different regimes of combustion of a fuel droplet in an oxidising atmosphere, namely the premixed-flame regime, the partial-burning regime and the diffusion-flame regime, is presented by treating the fuel and oxygen leakage fractions through the flame as known parameters. The analysis shows that the burning-rate constant, the flame-standoff ratio, and the flame temperature in these regimes can be obtained from the classical droplet-burning results by suitabl...
5 Citations Source Cite
Published on Mar 4, 2017in Combustion Science and Technology 1.13
Daniel L. Dietrich13
Estimated H-index: 13
(Glenn Research Center),
R. Calabria1
Estimated H-index: 1
+ 2 AuthorsForman A. Williams48
Estimated H-index: 48
(UCSD: University of California, San Diego)
ABSTRACTThis article presents the results of experiments conducted aboard the International Space Station involving the combustion of large bi-component droplets of decane and hexanol (50/50 by volume) in air ambients with ambient pressures between 0.05 and 0.30 MPa. The experiments showed the presence of sustained low-temperature or cool-flame burning following radiative extinction of large droplets at ambient pressures greater than or equal to 0.10 MPa. The droplet diameters at cool-flame exti...
5 Citations Source Cite
Published on Jan 1, 2017
Alberto Cuoci27
Estimated H-index: 27
(Polytechnic University of Milan),
Abd Essamade Saufi1
Estimated H-index: 1
(Polytechnic University of Milan)
+ 3 AuthorsT. Faravelli43
Estimated H-index: 43
(Polytechnic University of Milan)
Abstract A recent set of experiments carried out onboard the International Space Station (ISS) have shown that large n-alkane droplets, after the radiative extinction of the visible flame, can burn quasi-steadily in a low-temperature regime, up to a diffusive extinction accompanied by the formation of a vapor cloud. The experiments have also demonstrated that small droplets are unable to exhibit radiative extinction, but instead burn to completion or disruptively extinguish. In this work, we app...
7 Citations Source Cite
Published on Jan 1, 2017
Tanvir I. Farouk4
Estimated H-index: 4
(USC: University of South Carolina),
Daniel L. Dietrich13
Estimated H-index: 13
(Glenn Research Center)
+ 1 AuthorsFrederick L. Dryer4
Estimated H-index: 4
(Princeton University)
Abstract Observations of “ Cool Flame ” burning for large diameter isolated droplets on board the International Space Station have stimulated interest in combustion initiation/generation of non-premixed combustion modes. For a number of n -alkane fuels at large initial droplet diameters, the initiation process was observed to first establish a hot flame condition that radiatively extinguished, followed by a quasi-steady, “ Cool Flame ” droplet burning mode. However, recent large diameter n -deca...
11 Citations Source Cite
123456789