The central nervous system needs to coordinate multiple muscles during postural control. Functional coordination is established through the neural circuitry that interconnects different muscles. Here we used multivariate information decomposition of multichannel EMG acquired from 14 healthy participants during postural tasks to investigate the neural interactions between muscles. A set of information measures were estimated from an instantaneous linear regression model and a time-lagged VAR mode...
In this research, the study of functional connectivity between sources of electroencephalogram (EEG) activity assessed for different classes (well before seizure, preictal and post-ictal) was performed. EEG recordings were acquired from 12 subjects with focal epilepsy. Then, ten common spatial patterns (CSP) were obtained for EEG segments describing 95% of Riemannian distance between pairs of classes, followed by estimation of multivariate autoregressive (MVAR) models’ coefficients. The MVAR mod...
#2Jana Krohova(Comenius University in Bratislava)H-Index: 5
Last.Michal Javorka(Comenius University in Bratislava)H-Index: 20
view all 5 authors...
We present a new method to quantify in the frequency domain the strength of directed interactions between linear stochastic processes. This issue is traditionally addressed by the directed coherence (DC), a popular causality measure derived from the spectral representation of vector autoregressive (AR) processes. Here, to overcome intrinsic limitations of the DC when it needs to be objectively quantified within specific frequency bands, we propose an approach based on spectral decomposition, whi...
In this work, an electronic portable combo system able to synchronously acquire multiple signals, e.g. electrocardiographic (ECG), photoplethysmographic (PPG) and breathing waveforms, is presented. The realized system is also capable of showing in real time some physiological parameters which can be used for assessing health/stress status of the volunteer, such as heart rate and breathing frequency and their trends over time. Thanks to the use of non-invasive PPG probes, of batteries as power su...
The development of connected health technologies for the continuous monitoring of the psychophysical state of individuals performing daily life activities requires the aggregation of non-intrusive sensors and the availability of methods and algorithms for extracting the relevant physiological information. The present study proposes an integrated approach for the objective assessment of mental stress which combines wirelessly connected low invasive biosensors with multivariate physiological time ...
The coupling and latency between heart period (HP) and systolic arterial pressure (SAP) variability can be investigated along the two arms of the HP-SAP closed loop, namely along the baroreflex feedback from SAP to HP, and along the feedforward pathway from HP to SAP. This study investigates the HP-SAP closed loop variability interactions through cross-correlation function (CCF). Coupling strength and delay between HP and SAP variability series were monitored in 13 subjects prone to develop orth...
Many different analysis techniques have been developed and applied to EEG recordings that allow one to investigate how different brain areas interact. One particular class of methods, based on the linear parametric representation of multiple interacting time series, is widely used to study causal connectivity in the brain. However, the results obtained by these methods should be interpreted with great care. The goal of this paper is to show, both theoretically and using simulations, that results...
In this work, we analyze brain-heart interactions during different mental states computing mutual information (MI) between the dynamic activity of different physiological systems. In 18 healthy subjects monitored in a relaxed resting state and during a mental arithmetic and a serious game task, multichannel EEG, one lead ECG, respiration and blood volume pulse were collected via wireless non-invasive biosensors. From these signals, synchronous 300-second time series were extracted measuring brai...
The dynamical interplay between brain and heart is mediated by several feedback mechanisms including the central autonomic network and baroreflex loop at a peripheral level, also for a short-term regulation. State of the art focused on the characterization of each regulatory pathway through a single stressor elicitation. However, no studies targeted the actual quantification of different mediating routes leading to the generation of heartbeat dynamics, particularly in case of combined exogenous ...